

Prof. Girish Kumar Electrical Engineering Department, IIT Bombay

<u>gkumar@ee.iitb.ac.in</u> (022) 2576 7436

Helical Antenna

Total Length of wire = nLTotal axial length (A) = nS

$$\boldsymbol{L}=\sqrt{\boldsymbol{S}^2+\boldsymbol{C}^2}$$

$$\alpha = \tan^{-1}\left(\frac{S}{\pi D}\right) = \tan^{-1}\left(\frac{S}{C}\right)$$

Special Cases of Helical Antenna: Case 1: $\alpha = 0^{\circ} \Rightarrow S = 0 \Rightarrow$ Loop Antenna Case 2: $\alpha = 90^{\circ} \Rightarrow D = 0 \Rightarrow$ Linear Antenna

(Reference: JD Kraus, Antennas, Tata-McGraw Hill, 1988)

Modes in Helical Antenna

Helical Antenna Modes Chart

Field Distribution in Different Modes

Axial Mode Helical Antenna: Ground Plane

Monofilar Axial Mode Helical Antenna

- a) Flat Ground Plane
- b) Shallow Cupped Ground Plane
- c) Deep Conical Ground Plane Enclosure.

Conductor Size of Helical Antenna

Monofilar axial-mode helical antennas with wire diameter of 0.055λ, 0.017λ and 0.0042λ at center frequency of 400 MHz

Effect of conductor diameter on helical antenna performance - only minor changes

Helical Antenna Support

Axial Mode Helical Antenna -Input Impedance

For Axial Feed: $R = 140 * C_{\lambda} \Omega$

For Peripheral or Circumferential Feed: $R \approx 150 / \sqrt{C_{\lambda}} \Omega$

Restrictions: (a) $0.8 \le C_{\lambda} \le 1.2$ (b) $12^{\circ} \le \alpha \le 14^{\circ}$ (c) $n \ge 4$

Input Impedance Matching

1. Tapered Transition from helix to coaxial line

w = width of conductor at termination

2. Tapered Microstrip Transition

$$h = \frac{w}{[377/(\sqrt{\varepsilon_r}Z_0)] - 2}$$

Radiation Pattern of Axial Mode Helical Antenna

(---) Horizontally polarized field component and
(---) Vertically polarized.

Effect of No. of Turns (n)

Helical Antennas: $\alpha = 12.2^{\circ}$ and 10, 8, 6, 4, 2 turns.

Pattern of Single Turn Helical Antenna

Axial Mode Helical Antenna - Increased Directivity Endfire Array

Gain of Axial Mode Helical Antenna

HPBW (Half-Power Beamwidth) $\cong \frac{52}{C_{\lambda}\sqrt{n}S_{\lambda}}$ (deg) BWFN (Beamwidth Between First Nulls) $\cong \frac{115}{C_{\lambda}\sqrt{n}S_{\lambda}}$ (deg)

Directivity = 32,400 / HPBW²

 $Directivity = 12 C_{\lambda}^2 n S_{\lambda}$

Gain = η x Directivity, $\eta \approx 60\%$

Design of Axial Mode Helical Antenna

2x2 Helical Antenna Array

Instead of single 80-turns helical antenna, four 20turns helical antennas can be used

Directivity of each 20-turns helical antenna = 251.19/4 = 62.8

Effective Aperture =
$$D_o \frac{\lambda^2}{4\pi} \approx 5 \lambda^2$$

Assuming Square Aperture

Side Length = $\sqrt{5\lambda}$ = 2.236 λ

2x2 Array

Each Helix is placed at the center of its aperture.

Helical Antenna and Arrays

Arrays of Helical Antenna

Mutual Impedance between Arrays of Helical Antennas

Resistive (R) and Reactive (X) components of the mutual impedance of a pair of same-handed 8-turn axial-mode helical antennas of 12° pitch angle

2x2 Array of Helical Antenna at 800 MHz

Results of 2x2 Array of Helical Antenna

Helix as a Parasitic Element

Normal Mode Helical Antenna

Small Dipole:

$$E_{\theta} = j\eta \; \frac{kI_o S e^{-jkr}}{4\pi r} sin\theta$$

Small Loop:

$$E_{\phi} = \eta \frac{k^2 I_o \left(\frac{D}{2}\right)^2 e^{-jkr}}{4r} sin\theta$$

Therefore, Axial Ratio is:

$$AR = \frac{|E_{\theta}|}{|E_{\phi}|} = \frac{2S\lambda}{C^2} = \frac{2S_{\lambda}}{C_{\lambda}^2}$$

For Circular Polarization, $AR = 1 \Rightarrow$

Design of Normal Mode Helical Antenna

Feed is tapped after one turn for impedance matching

Normal Mode Helical Antenna (NMHA) on Small Circular Ground Plane

NMHA Design on Small Circular Ground Plane

Resonance Frequency	1.8 GHz
Wavelength	166 mm
Spacing = 0.027λ	4.5 mm
Diameter of Helix = 0.033λ	5.5 mm
No of Turns (N)	7
Pitch Angle (α)	14.6 Degree
Length of Wire = 0.75λ	124.5 mm

Effect of Ground Plane Size on NMHA

As ground plane radius increases from $\lambda/30$ to $\lambda/20$, resonance frequency decreases and the input impedance curve shifts upward. NMHA designed for 1.8 GHz and $r_{wire} = 1.6 \text{ mm} (\lambda/100)$

Effect of Wire Radius on NMHA

As radius of wire decreases from $\lambda/80$ to $\lambda/120$, its inductance increases so resonance frequency of NMHA decreases and its input impedance curve shifts upward (inductive region). NMHA designed for 1.8 GHz and $r_g = 5.5 \text{ mm} (\lambda/30)$

Effect of Wire Radius on Bandwidth of NMHA

Fabricated NMHA on Small Ground Plane and its Results

