Helical Antennas

Prof. Girish Kumar

Electrical Engineering Department, IIT Bombay

gkumar@ee.iitb.ac.in (022) 25767436

Helical Antenna

Total Length of wire $=n L$

Total axial length $(\mathrm{A})=\mathrm{nS}$

$$
L=\sqrt{S^{2}+C^{2}} \quad \alpha=\tan ^{-1}\left(\frac{S}{\pi D}\right)=\tan ^{-1}\left(\frac{S}{C}\right)
$$

Special Cases of Helical Antenna:
Case 1: $\alpha=0^{\circ} \Rightarrow S=0 \Rightarrow$ Loop Antenna
Case 2: $\alpha=90^{\circ} \Rightarrow \mathrm{D}=0 \Rightarrow$ Linear Antenna
(Reference: JD Kraus, Antennas, Tata-McGraw Hill, 1988)

Modes in Helical Antenna

Normal
Mode
$\mathrm{C}=\pi \mathrm{D} \ll \lambda$

Axial
Mode
$\mathrm{C} \approx \lambda$

Conical
Mode
$\mathbf{C} \approx \mathrm{n} \lambda, \mathrm{n}=2,3$.

Helical Antenna Modes Chart

Field Distribution in Different Modes

(a)

$C \ll \lambda$
Electric field lines $-\left[\begin{array}{l}\text { Axial } \\ \text { transverse }\end{array}\right.$

(c)

End view of helices

Axial Mode Helical Antenna: Ground Plane

Monofilar Axial Mode Helical Antenna
a) Flat Ground Plane
b) Shallow Cupped Ground Plane
c) Deep Conical Ground Plane Enclosure.

Conductor Size of Helical Antenna

\square Monofilar axial-mode helical antennas with wire diameter of $0.055 \lambda, 0.017 \lambda$ and 0.0042λ at center frequency of 400 MHz
\square Effect of conductor diameter on helical antenna performance - only minor changes

Helical Antenna Support

Axial Mode Helical Antenna Input Impedance

For Axial Feed: $R=140 * C_{\lambda} \Omega$
For Peripheral or Circumferential Feed:

$$
R \approx 150 / \sqrt{ } C_{\lambda} \Omega
$$

Restrictions: (a) $0.8 \leq \mathrm{C}_{\lambda} \leq 1.2$
(b) $12^{\circ} \leq \alpha \leq 14^{\circ}$
(c) $\mathrm{n} \geq 4$

Input Impedance Matching

1. Tapered Transition from helix to coaxial line

$w=$ width of conductor at termination
2. Tapered Microstrip Transition

$$
h=\frac{w}{\left[377 /\left(\sqrt{\varepsilon_{r}} Z_{0}\right)\right]-2}
$$

Radiation Pattern of Axial Mode Helical Antenna

$$
\begin{array}{llllll}
C_{\lambda}=.66 & C_{\lambda}=.73 & C_{\lambda}=.85 & C_{\lambda}=.97 & C_{\lambda}=1.09 C_{\lambda}=1.22 & C_{\lambda}=1.35 \\
275 \mathrm{MHz} & 300 \mathrm{MHz} & 350 \mathrm{MHz} & 400 \mathrm{MHz} .450 \mathrm{MHz} 500 \mathrm{MHz} & 560 \mathrm{MHz}
\end{array}
$$

OMeasured Field Patterns of Axial Mode Helical Antenna of 6 turns and pitch angle $\alpha=14^{\circ}$.
-CP Radiation Pattern for C/ from 0.73 to 1.22.
(-) Horizontally polarized field component and (--) Vertically polarized.

Effect of No. of Turns (n)

Helical Antennas: $\alpha=12.2^{\circ}$ and 10, 8, 6, 4, 2 turns.

Pattern of Single Turn Helical Antenna

$\phi=0$

$$
\alpha=12^{\circ}, \mathrm{n}=1
$$

Axial Mode Helical Antenna - Increased Directivity Endfire Array

Gain of Axial Mode Helical Antenna

$$
\text { HPBW }(\text { Half-Power Beamwidth }) \cong \frac{52}{C_{\lambda} \sqrt{n S_{\lambda}}}(\mathrm{deg})
$$

$$
\text { BWFN }(\text { Beamwidth Between First Nulls }) \cong \frac{115}{C_{\lambda} \sqrt{n S_{\lambda}}}(\mathrm{deg})
$$

$$
\text { Directivity }=32,400 / \mathbf{H P B W}^{2}
$$

$$
\text { Directivity }=12 C_{\lambda}^{2} n S_{\lambda}
$$

$$
\text { Gain }=\eta \times \text { Directivity, } \quad \eta \approx 60 \%
$$

Design of Axial Mode Helical Antenna

Desired: Directivity = $\mathbf{2 4} \mathbf{d B}=\mathbf{2 5 1 . 1 9}$
For Axial Mode Helical Antenna:
Assume: $C_{\lambda}=1.05$ (0.8 to 1.2)

$$
\alpha=12.7^{\circ}\left(12^{\circ} \text { to } 14^{\circ}\right)
$$

Calculate: $\mathrm{S}_{\lambda}=\mathrm{C}_{\lambda} \tan \alpha=0.2366$

$$
n=\frac{251.19}{12(0.2366)(1.05)^{2}}=80
$$

2x2 Helical Antenna Array

Instead of single 80-turns helical antenna, four 20turns helical antennas can be used

Directivity of each 20-turns helical antenna

$$
=251.19 / 4=62.8
$$

Effective Aperture $=D_{o} \frac{\lambda^{2}}{4 \pi} \approx 5 \lambda^{2}$
Assuming Square Aperture Side Length $=\sqrt{ } 5 \lambda=2.236 \lambda$

Each Helix is placed at the center of its aperture.

Helical Antenna and Arrays

Side View

1mon : :mor
 $$
\mathrm{n}=80
$$

$$
n=20
$$

Front View

4 Helices

Arrays of Helical Antenna

Side View
monn
mom $n=9$

Front View
$\left.\begin{array}{lll}\odot & \odot & \odot \\ \odot & \odot & \odot \\ \odot & \odot & \odot\end{array} \right\rvert\, 1.49 \lambda$
$\odot \odot \odot \odot$
$\odot \odot \odot \odot$
$\odot \odot \odot \odot$
$\odot \odot \odot \odot$
16 Helices

Mutual Impedance between Arrays of Helical Antennas

Resistive (R) and Reactive (X) components of the mutual impedance of a pair of same-handed 8-turn axial-mode helical antennas of 12° pitch angle

2×2 Array of Helical Antenna at 800 MHz

Results of 2×2 Array of Helical Antenna

Directivity $=\mathbf{1 8 . 5} \mathbf{~ d B}$ at 800 MHz

Helix as a Parasitic Element

Normal Mode Helical Antenna

Small Dipole:

$$
E_{\theta}=j \eta \frac{k I_{0} S e^{-j k r}}{4 \pi r} \sin \theta
$$

Small Loop:

$$
E_{\phi}=\eta \frac{k^{2} I_{o}\left(\frac{D}{2}\right)^{2} e^{-j k r}}{4 r} \sin \theta
$$

Therefore, Axial Ratio is:

$$
A R=\frac{E_{\theta} \mid}{\left|E_{\phi}\right|}=\frac{2 S \lambda}{C^{2}}=\frac{2 S_{\lambda}}{C_{\lambda}^{2}}
$$

For Circular Polarization, $\mathbf{A R}=1 \Rightarrow$

$$
C_{\lambda}=\sqrt{2 S_{\lambda}}
$$

Design of Normal Mode Helical Antenna

For Infinite Ground Plane:

$$
D_{\lambda}=0.013
$$

Wire length $\approx \lambda / 4-$ text book
 $>\lambda / 4-$ in reality

Radiation Resistance (\mathbf{R}_{s})

$$
\begin{aligned}
& \begin{array}{r}
R_{s}=\frac{1}{2}(790)\left(\frac{I}{I_{o v}}\right)^{2} h_{\lambda}^{2} \Rightarrow R_{s} \\
\text { Axial Ratio (AR) }
\end{array} \\
& \mathrm{AR}=2 \mathrm{~S}_{\lambda} / \mathrm{C}_{\lambda}{ }^{2} \\
& =2 \times 0.01 / 0.04^{2} \\
& =12.5=21.94 \mathrm{~dB}
\end{aligned}
$$

Feed is tapped after one turn for impedance matching

Normal Mode Helical Antenna (NMHA) on Small Circular Ground Plane

NMHA Design on Small Circular Ground Plane

Resonance Frequency

Wavelength
Spacing $=0.027 \lambda$
Diameter of Helix $=0.033 \lambda$
No of Turns (N)
Pitch Angle (α)
Length of Wire $=0.75 \lambda$

1.8 GHz

166 mm
4.5 mm
5.5 mm
14.6 Degree
124.5 mm

Effect of Ground Plane Size on NMHA

As ground plane radius increases from $\lambda / 30$ to $\lambda / 20$, resonance frequency decreases and the input impedance curve shifts upward. NMHA designed for 1.8 GHz and $\mathrm{r}_{\text {wire }}=1.6 \mathrm{~mm}(\lambda / 100)$

Effect of Wire Radius on NMHA

As radius of wire decreases from $\lambda / 80$ to $\lambda / 120$, its inductance increases so resonance frequency of NMHA decreases and its input impedance curve shifts upward (inductive region).
NMHA designed for 1.8 GHz and $\mathrm{r}_{\mathrm{g}}=5.5 \mathrm{~mm}(\lambda / 30)$

Effect of Wire Radius on Bandwidth of NMHA

Fabricated NMHA on Small Ground Plane and its Results

